
8/5/1999
Version 1.0

Draft

DFAS Oracle Designer
Design Transformer Standards and Guidlines

August 5, 1999

8/5/1999
Version 1.0

Draft 1

Draft DFAS Oracle Designer Design Transformer
Standards and Guidelines

Executive Summary
The purpose of the DFAS Oracle Designer Design Transformer Standards and
Guidelines is to provide detailed guidance for DFAS projects that will be using
Oracle Designer. Included in this document is detailed information on the settings
for the design transformers. Examples are guidelines for setting the usage of
prefixes or module implementation granularity.

Topics covered include database design transformer and application design
transformer standards and guidelines.

For additional information please reference the DFAS Oracle Designer Design
Standards and Guidelines. This paper addresses the specific naming conventions
and tool rules for DCII applications. The Transformer Standards and Guidelines
should be used in parallel with the Design Standards and Guidelines.

Database Design Transformer

STANDARDS
DDT-001: The database name selected is “<none>”. This means that the database

and tablespace settings in Designer may be left blank. The table definitions
are initially generated without defining/implementing against a database,
tablespace or storage clause. This is also true for the generation of the
index definition under the table definition.

DDT-002: The cascade rules for the newly generated foreign key definitions should be
the default value of “RESTRICTED”. Cascade rules will depend on business
rules and should be handled on a case by case basis if the default is not
used. Document any deviations from using RESTRICTED in the entity
model description.

DDT-003: The surrogate keys are to use the shared sequence domains. These
domains are of the format “SEQ#”, where the # is the length of the key.

DDT-004: The maximum identifier length should be the default value of 30.

DDT-005: Prefixes are to be generated for foreign key columns. The prefix is the table
alias.

DDT-006: Prefixes will not be generated for surrogate key columns.

8/5/1999
Version 1.0

Draft 2

DDT-007: Columns will not be prefixed.

DDT-008: The prefix for the table will be a 2- or 3-character application acronym
followed by an underscore (“_”). Common tables belonging to the DCD will
have the prefix of “DC_”.

DDT-009: The ordering of the columns should be as follows:
1. Primary Key Columns
2. Mandatory Columns
3. Discriminator Columns
4. Foreign Key Columns before Attribute Columns
5. Grouping Columns by their Source Entity

NOTE: Long and long raw columns should be moved to the bottom of the
column list after the table is generated. Currently only one of these types of
columns is allowed per table by the Oracle database.

GUIDELINES
DDT-010: The commit frequency allows the developer to determine how the results of

the transformation being executed are automatically saved to the database.
The selections should be used as follows:

"Don't commit" - A commit is not issued as part of normal processing. Used
as a preliminary "test" of the transformation process to determine the
correctness of the results. Developer may commit transformation
work after reviewing results of the transformation activity.

"At end of run" - A commit is issued after the completion of the
transformation. Used when the number of elements selected for
transformation is relatively small. Also valuable when incrementally
executing the transformation; works similar to "after each phase"
selection.

"After each phase" - commit points are created as each element type,
Primary or Secondary, is processed through the various
transformation step modes selected.. Used when processing a
significant number of elements and by default.

Steps:
 Determine the types of elements to create or modify
 Execute the "transformation" in a test mode ("Don't commit")
 Review transformation report contents
 Consider any changes required - changes to settings options, subtype
resolution, prefix creation, …
 Execute the "transformation" in final mode ("After each phase" or "At end

8/5/1999
Version 1.0

Draft 3

of run")

Note: Selection "At end of run" and "Don't commit" may require a larger
rollback segment depending on the number of elements selected and the
amount of work performed.

DDT-011: The “Create surrogate keys for all new tables” check box should be marked
whenever it is desired to let the Designer tool create surrogate keys. It is
recommended that the generation of tables needing the creation of
surrogate keys be separate from the generation of tables that already have a
primary unique identifier defined.

DDT-012: Constraints will almost always be implemented on the server and will usually
be implemented on the client. Therefore the selection for where to
implement constraints will usually be BOTH the server and the client.
Business rules will determine where the constraints need to be implemented.

DDT-013: The “Allow instantiable super-types” check box will be checked only when
the super-type needs a discriminator value distinct from the sub-type values.

Application Design Transformer Guidelines

The ADT is a repository utility that works like the DDT; it creates Design elements from
Analysis elements. In creates modules from functions. The ADT should be run after the
low-level functions have entity and attribute usages completely defined. The function
model should be as complete as possible before you run ADT, so it will give you a set of
modules that closely matches your needs. ADT should be run with two different settings
for each function branch; first to create candidate modules (generated modules you need
to explicitly accept) from functions and second to create a module structure from the
function business unit usages.

ADT-001: Generate Options: Select Candidate modules for menu generation - you
cannot generate modules that are menus unless you have modules that
have been accepted.

ADT-002 Common Parameters: This is where the start function is designated. ADT
generates a module for this and all other applicable functions under it in the
function hierarchy. If you want to generate modules for all functions leave
this field blank. The Module Prefix allows you to designate a module prefix
that ADT will use when creating the module.
Application prefixes examples include:
• GET_
• COM_
• SGL_
• DSDS_

8/5/1999
Version 1.0

Draft 4

• CFT_ or CEFT_
Module type identifiers are:
• F = Form
• R = Report
• U = Function
• S = Shell
• M = Menu
• T = Triggers
• K = Package
• W = Web
• P = Procedure
Purpose identifiers examples include:
• M – modify
• P – populate

All modules will have a Short Name property value of this prefix followed by
a four-digit number. ADT also inserts a value for the Name property of each
generated module definition. The default for this property is the uppercase
Short Definition property of the function, but you can modify the default by
editing the value. You can also specify the number at which the module
names will start. (Start Number) The Find Highest button fills in a number
based on the highest module number already generated. You need to enter
a number between 10 and 9999 before clicking this button.

ADT-003 Module Options: If you are running the ADT for modules, the Module
Options area is enabled so you can indicate the language for screen, report,
and utility modules that ADT generates. When creating candidate module
ADT creates a module type. The type is assigned as a module property
along with the settings that you specify here. The default settings are
Developer Forms, Developer Reports, and PL/SQL. The Language area
drop-down lists for Screen, Report and Utility include other options besides
the supported generators. Specify Forms, Reports, Visual Basic, or Web
Server if you will be using one of these generators.

ADT-004 Merge Granularity: When creating modules, you can determine the rule ADT
uses to group functions into modules. You choose one of three options for
Merge Granularity:

Identical Entities merges functions into one module if they have the same
entities mapped to them.

Identical Entities and Usages combine functions into one module if the
functions have the same entities and same CRUD for those entities.

8/5/1999
Version 1.0

Draft 5

Identical Attributes joins functions into one module if those functions have
the same entities and attributes mapped to them.

ADT-005 Menu Options: When generating menus in the ADT run, this area is enabled
and the Module Options area is disabled. Here you choose the menu
language (Developer Forms is the default). Max Options on Menu defines
the maximum the number of items you can have in each menu. If there are
more, ADT creates another menu to hold them. The last setting in this area
is Include Manual Options. If you check this, ADT will add the modules it
determined to be manual (those without data usages) into the menu
structure. You can use these for information screens that tell the user what
to do manually, if requirements dictate this need.

ADT-006 Unlike the Database Design Transformer, the Application Design
Transformer is not intended to be run iteratively to modify definitions of
previously created elements

ADT-007 If you need to start over with ADT but have created modules, you must
delete the modules first or you will get naming conflicts errors when you run
the utility again. If deleting a module in RON fails because the module is
called by other modules, open the Usages of the module and record the
"called by modules" and all passed values and arguments. Then use the
RON menu bar select Utilities - Force Delete to remove the module from the
repository.

ADT-008 Modules have dependencies that mandate a certain sequence for the tasks
you perform in the design transformer (DDT). Be sure to run the Database
Design Transformer to create tables definitions before running the
Application Design Transformer. Also be sure to run the ADT to create
menu modules.

ADT-009 If ADT merges functions into one module, it will also merge the text (in the
Description and Note Property) from those functions.

ADT –010 Function Mapping Guidelines: In general one module is created for each
function in the hierarchy under the one you specify as the Start Function
when you run the utility. A function must be one of three types: a leaf
(atomic) function with no elementary or common function parents, a common
function, or an elementary function. A leaf function is at the end of the
hierarchy tree (it has no children). A common function appears more than
once in the function hierarchy. An elementary function is one for which you
have set the Elementary property to Yes. ADT merges modules if they are
not manual (that is, they have entity and attribute usages) and are
associated with functions that have the same Response Needed property,
input parameters business unit usages, and similar data usages (based on

8/5/1999
Version 1.0

Draft 6

granularity you set in the ADT window). ADT will duplicate a module if the
function it is based on had more than one business unit usage. ADT will
create one module for each business unit for that function.

ADT-011 Module Categorization Guidelines: After creating modules ADT categorizes
them into types. It categorizes a module as manual if no tables are
implemented for entities of the function or if the function had no entities and
attributes associated with it or if the function has entities but no attributes. It
creates a report module if the function had read-only (retrieve) data usages.
It produces a utility module if the Response Needed property of the
corresponding function is Overnight. It creates a screen if the Response
Needed property of the corresponding function is Immediate. If none of
these conditions apply the module becomes a screen type.

ADT-012 Module Grouping Guidelines for Menus: The application-level menu module
is generated as the top level (main menu), and this module calls the first-
level menu modules. ADT generates the first level of menu modules from
the module business unit usages (derived from the function business unit
usages). If the module is not associated with any business unit, ADT groups
it in a Miscellaneous menu. The menu system as the following structure
which can be changed if needed:

Top Level Application System (main menu)
First Level Business unit grouping (top menu items)
Second Level Module type grouping (pull-down menu items)
Third Level Individual modules under the specific modules

ADT-013 Module Data Usage Guidelines - Each module that ADT creates will contain
one module component and a corresponding table usage from entity usage
in the function the module is based on. Column usages are similar; they are
mapped to bound items in the table if the function has the corresponding
attributes mapped into it. If DDT created a surrogate foreign key for a table,
that key will be created in the module component usage even though there
is no corresponding attribute. Another rule is that if a table has an INSERT
usage on the module, ADT will add all mandatory columns as bound item’s
usages whether or not there are corresponding attribute usages.

